Some Formulas for Apostol-euler Polynomials Associated with Hurwitz Zeta Function at Rational Arguments
نویسنده
چکیده
Throughout this paper, we always make use of the following notation: N = {1, 2, 3, . . .} denotes the set of natural numbers, N0 = {0, 1, 2, 3, . . .} denotes the set of nonnegative integers, Z−0 = {0,−1,−2,−3, . . .} denotes the set of nonpositive integers, Z denotes the set of integers, R denotes the set of real numbers, C denotes the set of complex numbers. The generalized Bernoulli polynomialsB (α) n (x) and Euler polynomialsE (α) n (x) of order α (real or complex) are usually defined by means of the following generating functions (see, for details, [1, 5, 13, 15]):
منابع مشابه
Fourier expansions and integral representations for the Apostol-Bernoulli and Apostol-Euler polynomials
We investigate Fourier expansions for the Apostol-Bernoulli and Apostol-Euler polynomials using the Lipschitz summation formula and obtain their integral representations. We give some explicit formulas at rational arguments for these polynomials in terms of the Hurwitz zeta function. We also derive the integral representations for the classical Bernoulli and Euler polynomials and related known ...
متن کاملSome discrete Fourier transform pairs associated with the Lipschitz-Lerch Zeta function
Keywords: Hurwitz–Lerch Zeta function Lipschitz–Lerch Zeta function Lerch Zeta function Hurwitz Zeta function Riemann Zeta function Legendre chi function Bernoulli polynomials Bernoulli numbers Discrete Fourier transform a b s t r a c t It is shown that there exists a companion formula to Srivastava's formula for the Lipschitz–Lerch Zeta function [see H.M. Srivastava, Some formulas for the Bern...
متن کاملOn the q-Extension of Apostol-Euler Numbers and Polynomials
Recently, Choi et al. 2008 have studied the q-extensions of the Apostol-Bernoulli and the ApostolEuler polynomials of order n and multiple Hurwitz zeta function. In this paper, we define Apostol’s type q-Euler numbers En,q,ξ and q-Euler polynomials En,q,ξ x . We obtain the generating functions of En,q,ξ and En,q,ξ x , respectively. We also have the distribution relation for Apostol’s type q-Eul...
متن کاملSome Generalizations and Basic (or q-) Extensions of the Bernoulli, Euler and Genocchi Polynomials
In the vast literature in Analytic Number Theory, one can find systematic and extensive investigations not only of the classical Bernoulli, Euler and Genocchi polynomials and their corresponding numbers, but also of their many generalizations and basic (or q-) extensions. Our main object in this presentation is to introduce and investigate some of the principal generalizations and unifications ...
متن کاملClosed-form formulae for the derivatives of trigonometric functions at rational multiples of pi
Keywords: Trigonometric functions Hurwitz zeta function Legendre chi function Lerch zeta function Bernoulli polynomials Euler polynomials a b s t r a c t In this sequel to our recent note [D. Cvijović, Values of the derivatives of the cotangent at rational multiples of π, Appl. Math. Lett. it is shown, in a unified manner, by making use of some basic properties of certain special functions, suc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009